	PETROLEUM DISTILLATE FRACTIONS (PDF) (This method was fully evaluated with Stoddard solvent. It can also be used to determine V.M.&P. naphtha and mineral spirits.)
Method no.:	48
Matrix:	Air
Target concentration:	2900 mg/m ³ Stoddard solvent (OSHA PEL)
Procedure:	Samples are collected by drawing a known volume of air through charcoal tubes. Samples are desorbed with carbon disulfide (CS ₂) and analyzed by gas chromatography (GC) using a flame ionization detector (FID).
Recommended air volume and sampling rate:	3 L at 0.2 L/min
Reliable quantitation limit:	0.77 mg/sample (260 mg/m³)
Precision: (1.96 SD): (Section 4.3.2)	17.8%
Status of method:	Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch.
Date: November 1984	Chemist: Michael L. Shulsky Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah

1 of 23

1. General Discussion

1.1 Background

1.1.1 History

Three refined petroleum mixtures are routinely analyzed at this laboratory. They are Stoddard solvent (boiling range 160-210°C), mineral spirits (boiling range 150-200°C), and petroleum distillates (V.M.&P. naphtha; boiling range 95-160°C). These mixtures will collectively be termed petroleum distillate fractions (PDF) throughout this method. All of these PDFs contain aliphatic and to a lesser extent aromatic hydrocarbons. (Ref. 5.1)

The procedures for collection (charcoal tubes) and analysis (GC/FID) of PDFs described in this evaluation are basically those used in NIOSH methods S380 and S382. (Ref. 5.2) For preparation of analytical standards, these NIOSH methods require a sample of the bulk material presumed to be the source of the air contamination (this bulk material will be referred to as the "source PDF" throughout this method). The shipment of source PDFs, which are often flammable, is inconvenient and the materials sometime require distillation before use in standards. For these reasons and because similar responses to different hydrocarbons are observed using a FID (Ref. 5.3), the use of analytical standards prepared from a PDF which is not the source PDF was investigated. In order to determine analytical conditions, it was assumed that this substitute PDF ("non-source PDF") should be of the same type, i.e. Stoddard solvent, mineral spirits, or petroleum distillates, as that used at the sampling site.

Internal standards (Istd) are routinely used in solvent analyses at this laboratory. Since the actual constituents of PDFs are unknown, the presence of an internal standard may cause an interference with the PDF or unduly lengthen the analysis time. For these reasons, the possibility of using an external standard (Estd) procedure was examined.

Also, in preliminary work it became apparent that the manner in which the baseline was set was a concern. If the data system was allowed to automatically set the baseline, inconsistencies in the positions to which the baseline was drawn were noticed (Figures 4.8.1 and 4.8.2). This produced calibration errors at lower concentrations of PDFs. To overcome this problem, an evaluation of certain "integrate functions" available in the data system software which control the baseline was done (Section 4.8.4).

In order to evaluate the parameters of baseline, Estd, and material used to prepare analytical standards, a study was done utilizing eight different PDFs consisting of five Stoddard solvents, two V.M.&P. naphthas and one mineral spirits. These were used to spike 8 sets of 12 charcoal tubes. Each 12-tube set was quantitated using analytical standards prepared from both source and non-source PDF. There were no restrictions on the analytical conditions or GC column used for these analyses, in order to avoid having data which would apply to only certain analytical conditions. (Section 4.8)

The results of this study indicate several things; there is no significant difference in results obtained by using either the source or non-source PDF (Section 4.8.2), an internal standard is not needed when consistent injection size can be maintained (Section 4.8.2), and consistent setting of the baseline may be obtained by using "integrate functions". (Section 4.8.4).

Other tests performed for this evaluation were break through, storage stability, desorption efficiencies, precision of the analytical procedure, sensitivity and reliable quantitation limit. The breakthrough tests were performed with both a Stoddard solvent (Section 4.4.1) and a V.M.&P. naphtha (Section 4.4.2) to ensure the collection procedure would work for the more volatile constituents of a V.M.&P. naphtha. All of the other tests were performed using a Stoddard solvent but the collection and analytical procedure should also be applicable to petroleum distillates and mineral spirits.

There are two OSHA PELs that pertain to petroleum distil late fractions. The PELs are 2900 mg/m³ for Stoddard solvent and 2000 mg/m³ for petroleum distillates (naphtha). Due to numerous synonyms and the overlapping boiling range fractions that are available, there is much confusion as to which standard is applicable in many instances. Mineral spirits, which is almost identical to Stoddard solvent in boiling range petroleum distillate fractions should be compared to the Stoddard solvent PEL; while the lower boiling range petroleum distillate fractions should be compared to the petroleum distillate (naphtha) PEL.

This evaluation shows that PDFs can be collected using charcoal with a 3-L air volume, analyzed by GC/FID and a non-source PDF may be used to prepare analytical standards.

1.1.2 Toxic effects (This section is for information only and should not be taken as the basis of OSHA policy).

"Short-term Exposure: Overexposure to Stoddard solvent causes irritation of the eyes, nose, and throat and may cause dizziness. Very high air concentrations may cause unconsciousness and death. Long-term Exposure: Prolonged overexposure to the liquid may cause skin irritation." (Ref. 5.4)

"Short-term Exposure: Overexposure to petroleum distillates may cause dizziness, drowsiness, headache, and nausea. They may also cause irritation of the eyes, throat, and skin. Long-term Exposure: Prolonged exposure may cause drying and cracking of the skin." (Ref. 5.5)

Men were exposed to mineral spirits concentrations of 2500 to 5000 mg/m³ for an unspecified time period. Both concentrations produced nausea and vertigo in the subjects. In another study at 4000 mg/m³ there was a prolongation of reaction time. (Ref. 5.1)

1.1.3 Potential workplace exposure

NIOSH estimates that about 600,000 workers in the United States are potentially exposed to all "specialized naphthas" (Ref. 5.1).

Petroleum distillates (V.M.&P. naphtha) is used as a quick evaporating paint thinner. Stoddard solvent is used in the dry cleaning industry. Mineral spirits is a general purpose thinner, a dry cleaning agent, and a solvent for paint and varnish industries. (Ref. 5.1)

1.1.4 Physical properties (Ref. 5.1 unless otherwise stated)

Petroleum distillates molecular weight: odor: boiling range: specific gravity: color: vapor pressure: flashpoint: synonyms: molecular species:	approximately 87-114 pleasant aromatic odor $95 - 160^{\circ}$ C 0.7275 - 0.7603 clear, water white to yellow 2 - 20 mm Hg at 20^{\circ}C -6.7 to 12.8°C (closed cup) benzine, naphtha 76, ligroin, high boiling petroleum ether C ₇ -C ₁₁
Stoddard solvent molecular weight: odor: boiling range: specific gravity: color: vapor pressure: flashpoint: synonyms: molecular species:	approximately 135 - 145 kerosene-like 160 - 210°C 0.75 - 0.80 colorless 4 - 4.5 mm Hg at 25°C 37.8°C (closed cup) 140 flash solvent, odorless solvent and low end point solvent C_{g} - C_{11}
<u>Mineral spirits</u> molecular weight: odor: boiling range: specific gravity: color: vapor pressure: flashpoint: synonyms: molecular species:	approximately 144 - 169 pleasant sweet odor 150 - 200°C 0.77 - 0.81 clear, water white 0.8 mm (Hg) at 20°C 30.2 - 40.5°C (closed cup) white spirits, petroleum spirits, and light petrol C_{9} - C_{12}

1.2 Limit defining parameters (Air concentrations are based on the recommended air volume (3 L) and a desorption volume of 1 mL.)

1.2.1 Detection limits

Since PDF consist of numerous and varying components, the determination of meaningful detection limits was not considered feasible.

1.2.2 Reliable quantitation limit

The reliable quantitation limit is 0.77 mg/sample (260 mg/m^3) This concentration was arrived at by taking all the results for calibration methods #4 and #5 from Tables 4.8.1 through 4.8.8 that were near certain concentrations, i.e., 0.3 mg/mL and 0.7 mg/mL, and finding the average recoveries, the average concentrations, and standard deviations (SD) near those concentrations. The results for samples near 0.77 mg/mL met both the requirements of 75% recovery and a precision (1.96 SD) of ±25% or better. (Section 4.2)

1.2.3 Sensitivity

The sensitivity of the analytical procedure over a range representing 0.5 to 2 times the target concentration based on the recommended air volume is 300954 area units per mg/mL. This is determined by the slope of the calibration curve. (Section 4.3.3.)

1.2.4 Recovery

The recovery of samples used in a 15-day storage test remained above 94% (Section 4.6). The recovery of the analyte from the collection medium during storage must be 75% or greater.

1.2.5 Precision of the analytical procedure

The pooled coefficient of variation obtained from replicate determinations of analytical standards at 0.5, 1, and 2 times the target concentration is 0.019 (Section 4.3.1).

1.2.6 Precision of the overall procedure

The precision of the overall procedure at the 95% confidence level is $\pm 17.8\%$ (Section 4.3.2). This includes an additional 5% for sampling error. The overall procedure must provide results that are $\pm 25\%$ or better at the 95% confidence level.

1.2.7 Reproducibility

Six samples spiked by liquid injection and a draft copy of this procedure were given to a chemist unassociated with this evaluation. The samples were analyzed after 2 days of storage at 22°C. The average recovery was 97.7% with a SD of ±3.53%. (Section 4.7)

- 1.3 Advantages
 - 1.3.1 The collection procedure is convenient.
 - 1.3.2 The analytical procedure is rapid and precise.
- 1.4 Disadvantages

None

- 2. Sampling Procedure
 - 2.1 Apparatus
 - 2.1.1 A personal sampling pump which can be calibrated within ±5% of the recommended flow rate is needed.
 - 2.1.2 Coconut shell charcoal tubes which consist of glass tubes 7 cm long, 6-mm o.d., and 4-mm i.d., containing a 100-mg section and a 50-mg section of charcoal separated with a urethane foam plug are used. The glass tube is flame sealed at both ends. For this evaluation, SKC, Inc. charcoal tubes, lot 120, were used.
 - 2.2 Reagents

None required

- 2.3 Technique
 - 2.3.1 Immediately before sampling, break open the ends of the charcoal tube. All tubes should be from the same lot of charcoal.
 - 2.3.2 Connect the charcoal tube to the pump with a short piece of flexible tubing. The 50-mg portion of the charcoal tube is used as the backup section; therefore, air should flow through the 100-mg portion first.
 - 2.3.3 Position the tube vertically to avoid channeling through the charcoal.
 - 2.3.4 Air being sampled should not pass through any hose or tubing before entering the charcoal tube.
 - 2.3.5 Record the temperature and relative humidity of the atmosphere being sampled.
 - 2.3.6 Immediately after sampling, seal the ends of the tubes with the plastic caps.
 - 2.3.7 With each set of samples, submit at least one blank charcoal tube from the same lot as the sample tubes. The blank tube should be treated in the same manner as the samples (break ends, seal, transport) except no air is drawn through it.
 - 2.3.8 Transport the samples and corresponding paperwork to the laboratory for analysis.
 - 2.3.9 Submit source PDF whenever possible. Place the material in glass bottles with Teflon-lined caps, and transport to laboratory separately from air samples.
- 2.4 Breakthrough

Studies to determine the 5% breakthrough value were done near the PEL for Stoddard solvent, using a dynamically generated atmosphere with approximately 75% relative humidity at 22°C and a sampling rate of 0.203 L/min. These studies were performed using only the 100 mg portion of a charcoal tube. The average breakthrough for Stoddard solvent was 6.9 L and average capacity was 20 mg. (Section 4.4.1). Breakthrough studies were performed with a petroleum distillate (V.M.&P.) naphtha since this type of PDF boils at a lower temperature. The average breakthrough volume for this V.M.&P. naphtha was 9.4 L and the average capacity was 20.3 mg. (Section 4.4.2)

2.5 Desorption efficiency

Desorption efficiencies were determined at several different loadings of Stoddard solvent. These loadings corresponded to the mass of Stoddard solvent which would be collected on a charcoal tube when sampling 3 L of an atmosphere containing 0.1, 0.5, 1, and 2 times the PEL. The tubes were prepared by liquid injection of the Stoddard solvent and stored in a refrigerator for 24 h before analysis. The average desorption efficiency was 100%. (Section 4.5)

2.6 Recommended air volume and sampling rate.

The recommended air volume is 3 L at 0.2 L/min.

- 2.7 Interferences
 - 2.7.1 Since charcoal will collect vapors from many organic compounds all organics being used in significant amounts near the sampling area could decrease the capacity of the charcoal for PDF.
 - 2.7.2 Water vapor also may decrease the capacity of charcoal.
- 2.8 Safety precautions
 - 2.8.1 Wear eye protection when breaking the ends of the charcoal tubes.
 - 2.8.2 Place the sampling pump on the employee in a manner so it will not interfere with the work being done.

- 2.8.3 Place the charcoal tube in a holder so the broken ends are not exposed.
- 2.8.4 Obey all safety regulations of the workplace.
- 3. Analytical Procedure
 - 3.1 Apparatus
 - 3.1.1 A gas chromatograph (GC) equipped with a flame ionization detector (FID) is used for analysis. A Hewlett-Packard 5710 GC was primarily used in this evaluation.
 - 3.1.2 A GC column capable of separating carbon disulfide (CS₂) and the internal standard, if any, from the constituents of the PDF. For this evaluation, a 20 ft by 1/8 in. stainless steel column packed with 10% SP-1000 on 80/100 Supelcoport was used.
 - 3.1.3 An integrator for determining peak area is needed. A Hewlett-Packard 3357 data system was used.
 - 3.1.4 Small vials with Teflon-lined caps for desorption of charcoal: Two-milliliter vials are preferable.
 - 3.1.5 Microliter syringes such as 10- μ L for preparing standards and 1- μ L for sample injection are needed.
 - 3.1.6 Pipettes for dispensing the desorbing solution may be used. A 1-mL reagent dispenser is convenient.
 - 3.1.7 Volumetric flasks are used for standard preparation.
 - 3.1.8 An analytical balance is used to prepare standards.
 - 3.1.9 A distillation apparatus may be needed.
 - 3.2 Reagents
 - 3.2.1 Carbon disulfide, reagent grade.
 - 3.2.2 Source PDF, when possible, from the operation where sampling was done.
 - 3.2.3 Internal standard compound such as hexylbenzene, reagent grade (optional).
 - 3.2.4 GC grade hydrogen, air and nitrogen.
 - 3.2.5 Desorbing solvent: CS_2 or 1 µL internal standard/mL CS_2 .
 - 3.3 Standard preparation
 - 3.3.1 Analytical standards are prepared in the desorbing solvent.
 - 3.3.2 Source PDF received from the sampling site may be used as the analytical standard if it appears clear and colorless, and has a density in the range of 0.74-0.79 g/mL. If the bulk is colored or has a density greater than 0.79 g/mL, it needs to be distilled to separate the volatile solvents from the pigments or heavier oils before it can be used as an analytical standard.
 - 3.3.3 If source PDF is not submitted or is unusable, a nonsource PDF from the laboratory should be used.
 - 3.3.4 Standards must be prepared at four different concentrations so proper integration of the peaks may be confirmed (Section 3.5.3). A useful range for standard concentrations is approximately 1 μ L/mL to 10 μ L/mL.
 - 3.4 Sample preparation
 - 3.4.1 The 100-mg portion of the charcoal tube is placed in a vial and the 50-mg portion is placed in a separate vial. The glass wool and urethane plugs are discarded.

- 3.4.2 One milliliter of desorbing solvent is added to each vial.
- 3.4.3 The vials are immediately capped and shaken periodically for 30 min before analysis.
- 3.5 Analysis
 - 3.5.1 GC conditions

oven:	initial temperature 100°C for 4 min programmed to 180°C at 8°/min
injector:	200°C
detector:	225°C
nitrogen (carrier):	22 mL/min
hydrogen:	30 mL/min
air:	250 mL/min
injection size:	1 μL
chromatogram:	Figure 3.5.1

- 3.5.2 The data system used in this evaluation was a Hewlett-Packard 3357 which contains several "integrate functions." The integrate function termed "hold the baseline" should be used for the analyses. This function should be started before the constituents of the petroleum distillate fraction begin to elute from the column and it should be canceled after the PDF constituents have eluted or when column bleed becomes significant whichever occurs first.
- 3.5.3 The areas of the peaks due to PDF constituents are added together (area summation) in the analysis of the standards and samples. The summed areas and the concentration of the analytical standards are used to determine a linear least squares fit equation. The concentration of the samples is determined by entering their summed areas into the least squares equation.
- 3.5.4 If the peaks present in the samples do not elute in approximately the same time range as the standards, a comparison of the constituents in the samples and standard should be done by GC/MS to confirm that the samples do contain PDF type compounds and of what type for reporting purposes. If distinct analytes are confirmed by GC/MS, their identity and approximate concentration should be reported.
- 3.5.5 Any sample above the PEL should be confirmed by GC/MS or another suitable technique.
- 3.6 Interferences
 - Since PDF are mixtures of aliphatic and aromatic hydrocarbons and elute from a GC in a 3.6.1 peak cluster, it may be difficult to eliminate interfering compounds. If a large interfering peak appears in an air sample, identification by GC/MS may be necessary.
 - 3.6.2 It may be difficult to separate a single analyte which is requested for analysis from the PDF constituents. Changing columns such as from a polar to a non-polar (SP-1000 to an SP-2100) may help separate the analyte.
- 3.7 Calculations
 - 3.7.1 PDF should be reported as mg/m³ since any ppm value would require the use of an approximate molecular weight.
 - The air concentration in mg/m³ is determined from the mass of analyte in the sample as 3.7.2 in the following example:

Upon analysis, 3.5 mg was found for a sample with a 3-L air volume.

 $mg/m_{a}^{3} = (mg/desorption efficiency)/air vol.$ $mg/m^{3} = (3.5 mg/1.00)/(0.003 m^{3})$ $mg/m^3 = 1167 mg/m^3$

- 3.8 Safety precautions
 - 3.8.1 Work in a hood when using solvents during sample and standard preparation.

- 3.8.2 Keep solvents away from sources of high temperatures such as detectors and injectors.
- 3.8.3 Avoid skin contact with solvents.
- 3.8.4 Wear safety glasses at all times.
- 4. Backup data
 - 4.1 Detection limits of the analytical and overall procedure

The determination of detection limit values is not practical in the context of a rigid definition such as a peak with a height of 5 times the baseline noise. Since PDFs may have similar constituents which have unsimilar concentrations, there is no one representative peak that can be used to determine detection limits for all PDFs.

4.2 Reliable quantitation limit

The amount of 0.77 mg/sample (260 mg/m³) is determined to be the approximate amount reliably quantitated for any applicable petroleum distillate fraction within the requirements of at least 75% recovery and a precision (1.96 SD) of $\pm 25\%$ or better. The injection size recommended in the analytical procedure (1 µL) was used in the determination of the reliable quantitation limit.

Reliable Quantitation Limit Data								
sample number	calibration method*	lstd	mass (mg) spiked	mass (mg) recovered	% recovered			
1	4 5	yes no yes no	0.789	0.873 0.823 0.773 0.762	111 104 98 96			
8	4 5	yes no yes no	0.789	0.847 0.806 0.751 0.746	107 102 95 95			
14	4 5	yes no yes no	0.777	0.812 0.779 0.930 0.863	104 100 120 111			
21	4 5	yes no yes no	0.777	0.753 0.778 0.845 0.845	97 100 109 109			
31	4 5	yes no yes no	0.753	0.643 0.663 0.703 0.689	85 88 93 92			
35	4 5	yes no yes no	0.753	0.684 0.696 0.748 0.723	91 92 99 96			
39	4 5	yes no yes no	0.754	0.658 0.552 0.602 0.529	87 73 80 70			
47	4 5	yes no yes no	0.754	0.655 0.715 0.609 0.685	87 95 81 91			
51	4 5	yes no yes no	0.779	0.828 0.823 0.825 0.821	106 106 106 105			
60	4 5	yes no yes no	0.779	0.820 0.810 0.818 0.809	105 104 105 104			

Table 4.2

Table 4.2 Reliable Quantitation Limit Data								
sample number	calibration method*	Istd	mass (mg) spiked	mass (mg) recovered	% recovered			
65	4 5	yes no yes no	0.761	0.793 0.778 0.816 0.788	104 102 107 102			
70	4 5	yes no yes no	0.761	0.824 0.793 0.831 0.819	108 104 109 108			
76	4 5	yes no yes no	0.776	0.900 0.949 0.838 0.845	116 122 108 109			
83	4 5	yes no yes no	0.776	0.851 0.912 0.792 0.815 X SD 1.96SD	110 117 102 105 100.7% 10.76 21.09%			

* Explanation of calibration methods under Table 4.8.2

- 4.3 Precision and Sensitivity
 - 4.3.1 The precision of the analytical method was determined by replicate injections of analytical standards prepared at 0.5, 1, and 2 times the target concentration. The pooled coefficient of variation is 0.019.

Table 4.3.1 Precision of Analytical Method								
× target concn 0.5× 1.0× 2.0×								
area counts	1328744 1350244	2761497 2731651 2757576 2735224 2731653 2693328	5482172 3394150 5505614 5451850 5466193 5413149					
X SD CV CV	1338756 40538 0.030 0.019	2735155 24375 0.0089	5452188 42052 0.0077					

- 4.3.2 The precision of the overall procedure was calculated by taking the average of the SDs for methods #4 and #5 (both Istd and Estd) from Table 4.8.1 and multiplying by 1.96. This number includes ±5% for sampling error. The usual value on the cover page is the standard error of estimate from the storage test but in this evaluation this value would not have included variability for using different PDFs for analytical standards.
- 4.3.3 Sensitivity is defined as the slope of the calibration curve for analytical standards from 0.5 to 2 times the target concentration. (Table 4.3.1, Figure 4.3.2) The sensitivity is 300954 area counts/(mg/mL). The sensitivity will change depending on the detector and method of integration.

4.4 Breakthrough

- 4.4.1 Breakthrough was determined by sampling a dynamically generated test atmosphere of Stoddard solvent (about 2900 mg/m³ with 76% RH at 23°C), using a charcoal tube containing only the 100-mg portion of charcoal and monitoring the concentration of Stoddard solvent in the air which had passed through the charcoal. Five-percent breakthrough is defined as the point during this sampling when the air exiting the charcoal tube has a concentration of Stoddard solvent that is 5% of the test atmosphere. Two tests were performed, with 5% breakthrough air volumes of 6.5 L and 7.3 L and capacities of 19.1 mg and 21.5 mg being obtained respectively. The average 5% breakthrough air volume was 6.9 L and capacity was 20.3 mg. (Fig. 4.4)
- 4.4.2 Breakthrough tests were also performed using a petroleum distillate bulk since its boiling range is lower than Stoddard solvent and it contains more volatile constituents. The test atmospheres were about 2000 mg/m³ with 74% RH at 23 °C. Three tests were performed, with 5% breakthrough air volumes of 9.6, 9.1 and 9.5 L and capacities of 20.82, 19.73 and 19.95 mg being obtained respectively. The average capacity was 20.3 mg and the average 5% breakthrough air volume was 9.4 L.

4.5 Desorption efficiencies

Desorption efficiencies were determined by injecting known amounts of Stoddard solvent onto the 100-mg portion of six charcoal tubes, allowing them to sit overnight and analyzing the tubes on the next day. The average desorption efficiency over the range of 0.08 to 2 times the target concentration is 100%.

Table 4.5 Desorption Efficiencies									
 × target concn µg/sample 	0.08× 0.76	0.5× 4.55	1× 9.1	2× 18.6					
desorption efficiency, %	103 102 99 102 100 103 102	100 101 102 102 101 101 101	100 100 101 101 101 101 101	99 99 98 95 96 94 97					

4.6 Storage data

Thirty-six samples were collected from a dynamically generated atmosphere of Stoddard solvent. The atmosphere was approximately 2900 mg/m³ and 75% RH at 22°C. Of these 36 samples, six were analyzed immediately, while the remaining 30 were stored; 15 at ambient temperature and 15 at -5°C. Approximately every third day, 3 samples from each of the storage sets were analyzed. The average recovery was 96% for ambient storage and 97% for refrigerated storage. The data of Table 4.6 are shown graphically in Figures 4.6.1 and 4.6.2.

Table 4.6 Storage Tests								
time (days)	ре	rcent rec (ambier			percent recovery (refrigerated)			
0	97	99	100	99	99	99		
3	95	96	96	96	97	96		
7	95	96	97	96	97	97		
11	95	96	97	97	96	96		
13	95	96	96	96	96	96		
19	98	96	96	97	99	97		

4.7 Reproducibility data

Six samples, spiked by liquid injection, and a draft copy of this procedure were given to a chemist unassociated with this evaluation. The samples were analyzed after 3 days of storage at 22° C. The average recovery was 97.7% with a standard deviation of ±3.53%.

Table 4.7 Reproducibility Results								
µg spiked	µg recovered	percent recovered						
7756	7432	95.8						
7756 7756	7510 7443	96.8 95.8						
7756	7493	96.6						
7756 7756	7466 8136	96.3 104.9						
1150	X	97.7						
	SD	3.53						

4.8 Quantitation factors

- 4.8.1 A total of 96 samples were used to evaluate differences between source and non-source PDF, automatic baseline set and controlled baseline set, and internal and external standard procedures. They were prepared by liquid injection of each of 8 PDFs on 12 charcoal tubes. These 8 sets were prepared at different times. Each set and an aliquot of the source PDF were given to the branch of this laboratory which routinely analyzes samples for PDF. The samples were desorbed with a CS₂/Istd solution and analytical standards were prepared in the same solution from the source PDF and a non-source PDF chosen by the analyst. The data for these standards and samples was quantitated with nine different calibration methods. Explanations of these calibration methods are given at the bottom of Table 4.8.2. Both internal and external standard procedures were used for calibration methods #1-5. For the external standard procedure, the peak from the internal standard was ignored in all the calculations. The results from these 8 sets of PDF samples are presented in Tables 4.8.2-4.8.9, each table represents the data from one PDF. Table 4.8.1 summarizes the data as average percent recoveries for all PDFs analyzed with each calibration method using internal and external standard procedures. For all calibration methods except #3 the summation of the peak areas for the constituents of the PDF was used to determine the response factors. Method #3 used the peak area of the largest peak in the PDF for determination of the response factors.
- 4.8.2 The six analytical standards were analyzed at the same time as the samples. A linear least squares fit for each set of standards was used in all of the calibration methods except methods #3, #8 and #9. In these cases only one standard was used for calibration. Source PDF was used with calibration methods #1, #4, #6 and #8. By comparing the average results and the standard deviations obtained for method #1 to #2, #4 to #5, #6 to #7, and #8 to #9 in Table 4.8.1., it can be seen that there is no significant difference in the results; therefore, source or non-source PDF may be used to prepare analytical standards.
- 4.8.3 An internal standard was present in all of the samples used but results were calculated both with the internal standard correction and without it for calibration methods #1 through #5. (Tables 4.8.1 to 4.8.9). For all of the analyses, automatic liquid sampling devices were used with a single injection of each sample. At the bottom of Table 4.8.1 are the average results for all the PDFs using all the calibration methods calculated with both the internal standard (Istd) and external standard (Estd) procedures. From this data there appears to be no real difference between the results using the Istd correction and not (Estd). The use of an internal standard is left to the judgment of the analyst since the lengthening of the analysis and possible interferences caused by an internal standard compound will be different for each set of samples.
- 4.8.4 Three different techniques of setting the baseline during analysis were investigated. One technique was to allow the data system (Hewlett-Packard 3357) to calculate the baseline and set it automatically. The other techniques require the analyst to control the baseline by using either a basic program to set the baseline and integrate the area under the chromatogram or an "integrate function" built into the data system to set the baseline.
 - a) At lower concentrations of PDFs, the technique of allowing the data system to automatically set the baseline produced inconsistent results. (Figure 4.8.1 and 4.8.2) This may be due to a parameter in the data system termed "slope sensitivity", but since single analytes are often requested in addition to PDF, setting the slope sensitivity for PDF may not be accurate for the single analytes. Calibration methods #6, #7, #8 and #9 used this technique (Tables 4.8.1 4.8.9). The results in Table 4.8.1 are the

average recoveries for each calibration technique with the 8 different PDFs. As can be seen in this table, the percent recoveries for each separate PDF using calibration methods #6, #7, #8 and #9 ranged from 28-143%. The average results listed at the bottom of the table for all PDFs using these four calibration methods ranged from 74-103%. Methods #6 and #7 used a linear least squares fit for calibration while methods #8 and #9 used a one point calibration. The linear least squares fit does provide results (103 and 96%) closer to the expected value but the standard deviation is larger than for methods #1-#5 in which the baseline is controlled. Therefore, controlling the baseline is recommended.

- Calibration methods #1 and #2 used a basic program for baseline setting and b) integration. This basic program was written to be used after analyzing the standards, blanks and samples. The raw data collected during an analysis is in the form of area slices which are simply detector voltages taken and stored every 0.5 s. The analyst enters into the basic program the time span over which the PDF constituents elute. The program saves the value of the first area slice in the analytical run to be used as the baseline and when the start time of the PDF is reached the program subtracts the baseline area slice from all the area slices in the specified time span and sums the differences. This summation is used as the area of PDF constituents. This program integrated the area above the baseline but not as individual peaks. The average recoveries are presented in Table 4.8.1. Since this program did not have any peak detection routine, it would not differentiate between a rise in the baseline due to a peak and column bleed. Therefore, if the baseline was not consistent and PDF constituents were eluting from the column at these times, area may be added to the PDF area which was caused by column bleed and not PDF constituents. This technique of baseline control is not recommended.
- c) The two evaluated integrate functions which control the baseline were "hold the baseline" (Figure. 4.8.2) and "valley reset" (Figure 4.8.4). The "valley reset" function resets the baseline every time the data system detects a zero slope or a switch from negative to positive slope of the detector output. This function is performed by the data system with start and stop times entered by the analyst. Calibration method #3 used this function and the area of the largest peak for calibration of a response factor. As can be seen in Table 4.8.1, the average results for all the PDFs analyzed with method #4 were 102(±2.3)% with the internal standard procedure and 102(±4.1)% with the external standard procedure. Comparing these results to those of the other calibration methods, method #4 is the most accurate. However, this method requires that the source PDF be used as analytical standards because the ratio of the area of the chosen peak to the others in the PDF must be constant.
- d) The "hold the baseline" function simply records the detector voltage at a certain time during the analysis and maintains that as the baseline until the function is canceled. The time to start this function is slightly before the PDF constituents begin to elute and the time to cancel it is after the constituents have eluted or when column bleed becomes significant. Both of these times are set by the analyst. After the function is canceled, the data system is free to set the baseline and it usually does correct for baseline drift due to column bleed; therefore, excess area is not added to the PDF as it was with the basic program. Calibration methods #4 and 5 used this technique. The average results and standard deviations for all PDFs for these two methods given at the bottom of Table 4.8.1 are better than the other calibration methods except #3, although this calibration method (#3) requires the use of source PDF in preparing analytical standards. Therefore, using the integrate function of "hold the baseline" is recommended and a linear least squares fit of the standards should be used to quantitate the samples.

4.8.5 Recommendations

For analysis of petroleum distillate fractions, either the source PDF (Section 3.3.2) or a non-source PDF may be used to prepare analytical standards. It is recommended that the baseline be controlled with the "hold the baseline" integrate function during elution of the PDF constituents or until column bleed becomes significant whichever occurs first. Finally, either internal standard or external standard may be used with no loss in accuracy or precision.

Calculated from Tables 4.8.2 to 4.8.9										
(see notes) calibration methods										
table	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9
4.8.2	yes no	105 103	96 95	104 100	107 102	95 95	97	92	100	93
4.8.3	yes no	106 108	115 115	104 104	100 106	111 109	99	101	110	110
4.8.4	yes no	109 115	104 106	99 103	91 94	99 98	93	113	91	93
4.8.5	yes no	103 103	102 105	104 102	90 87	83 83	110	93	93	91
4.8.6	yes no	99 98	97 96	100 99	104 103	103 103	98	84	75	75
4.8.7	yes no	100 99	95 97	104 100	103 100	104 102	107	110	31	32
4.8.8	yes no	85 104	91 93	100 109	106 114	99 101	143	100	29	28
4.8.9	yes no	119 135	125 135	100 95	99 95	100 95	83	73	67	73
X SD X SD	(PDFs- Istd) (PDFs- Estd)	105 7.3 108 12.1	103 11.5 105 14.1	102 2.3 102 4.1	100 6.4 100 8.2	99 8.1 98 7.7	103 18.0	96 13.2	74 30.6	74 29.7

Table 4.8.1
Average Percent Recoveries
Calculated from Tables 1.8.2 to 1.8.9

notes:

Explanation of Calibration methods under table 4.8.2 Istd column: "yes" indicates internal standard was used; "no" indicates an external standard procedure used. "blank" under calibration methods #6, 7, 8 and 9 indicates no data was collected with an external standard procedure. 1.) 2.) 3.)

Table 4.8.2 Percent Found for Stoddard Solveant A											
(see notes) calibration methods											
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9
1	789	yes no	104 102	96 93	102 97	111 104	98 96	96	91	101	93
2	3159	yes no	101 100	94 92	103 98	106 100	94 93	99	93	102	94
3	4739	yes no	102 101	94 94	104 100	107 103	95 95	99	92	101	93
4	237	yes no	120 108	103 98	107 102	109 101	97 94	91	87	96	88
5	6318	yes no	103 101	94 94	104 101	104 101	93 93	103	96	104	96
6	3159	yes no	102 103	95 95	105 101	105 101	94 94	102	102	105	9
7	6318	yes no	103 101	94 95	104 101	106 103	94 95	101	93	102	94
8	789	yes no	102 100	94 92	101 97	107 102	95 95	91	86	95	88
9	4739	yes no	103 103	95 95	105 102	107 104	95 96	102	95	104	96
10	2369	yes no	102 103	95 95	104 101	108 104	96 97	97	92	101	93
11	237	yes no	115 105	99 95	105 101	104 99	92 91	86	81	90	83
12	2369	yes no	104 106	97 97	106 104	110 107	98 99	99	94	97	95

notes:

Calibration method #1 uses as analytical standards the source PDF, the basic program for peak integration 1) and area summation of the standards for calibration.

- 2) 3)
- Calibration method #2 uses as analytical standards a non-source PDF, otherwise the same as #1. Calibration method #3 uses the source PDF, "valley reset" for peak integration and a single peak in the standards for calibration. Calibration method #4 uses as analytical standards the source PDF, "hold the baseline" for peak integration
- 4)
- 5)
- Calibration method #4 uses as analytical standards the source PDF, "hold the baseline" for peak integration and area summation of standards for calibration. Calibration method #5 uses as analytical standards a non-source PDF, otherwise the same as #4. Calibration method #6 uses as analytical standards the source PDF, the data system sets the baseline for peak integration, and area summation of standards for calibration. Calibration method #7 uses as analytical standards for calibration. Calibration method #7 uses as analytical standards a non-source PDF, otherwise the same as #6. Calibration method #8 uses as analytical standards the source PDF, the data system sets the baseline for peak integration, and area summation of only one standard for calibration. Calibration method #9 uses as analytical standards a non-source PDF, otherwise the same as #8. 6)
- 7)
- 8í
- 9)

	Percent Found for Stoddard Solvent B										
(see r	notes)					calibra	ation me	ethods			
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9
13	3109	yes no	112 107	119 114	111 106	116 111	128 118	103	95	103	103
14	777	yes no	111 108	120 116	108 103	104 100	120 111	125	122	137	136
15	233	yes no	122 117	141 125	103 94	89 	96 89	79	132	136	136
16	5440	yes no	106 104	113 110	106 104	106 104	117 112	107	98	105	105
17	7772	yes no	106 104	114 110	104 103	105 105	116 112	107	103	106	105
18	233	yes no	107 108	125 116	103 103	79 	78 76	55	101	114	113
19	4663	yes no	101 107	108 114	101 106	_ 107	113 115	99	89	98	98
20	3109	yes no	100 109	106 116	100 107	99 106	114 119	97	86	97	97
21	777	yes no	99 104	108 112	100 103	97 100	109 109	105	102	118	118
22	7772	yes no	104 106	112 113	103 107	104 108	114 115	105	101	104	104
23	5440	yes no	103 110	110 117	104 111	104 111	115 119	104	95	103	103
24	4663	yes no	100 107	107 114	101 108	102 108	113 116	99	89	98	98

Table 4.8.3

note: Explanation of calibration methods under Table 4.8.2

Table 4.8.4 Percent Found for VM&P Naphtha A

	Percent Found for VM&P Naphtha A											
(see r	notes)		_			calibra	ation me	ethods				
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9	
25	7528	yes no	103 120	102 105	104 106	89 94	98 98	102	104	102	104	
26	5270	yes no	102 112	104 107	103 107	89 95	97 99	101	105	102	104	
27	7528	yes no	106 119	104 105	107 106	92 94	100 98	105	107	105	107	
28	1506	yes no	106 110	107 109	98 105	92 98	100 102	93	105	93	95	
29	3011	yes no	100 106	103 106	97 104	88 94	96 98	98	104	98	100	
30	226	yes no	172 177	119 121	96 101	100 100	110 102	72	148	65	66	
31	753	yes no	98 99	99 99	94 99	85 88	93 92	88	111	86	88	
32	5270	yes no	99 106	120 103	101 103	88 92	96 96	101	103	100	102	

	recent round for vinder Naphtna A												
(see n	otes)		calibration methods										
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9		
33	753	yes no	101 101	103 102	94 98	91 92	99 96	91	114	89	91		
34	1506	yes no	100 103	106 108	98 105	92 97	100 101	93	105	93	95		
35	226	yes no	124 126	103 103	95 99	97 93	106 96	71	146	64	65		
36	3011	yes no	97 103	103 106	98 105	89 95	97 99	98	104	98	100		

Table 4.8.4 Percent Found for VM&P Naphtha A

note: Explanation of calibration methods under Table 4.8.2

(see notes)

μg

sample

Table 4.8.5 Percent Found for VM&P Naphtha B calibration methods #2 #3 #4 Istd #1 #5 #6 #7 103 98 106 96 88 103 98 yes

#8

#9

	1.2										
37	3768	yes no	103 95	98 93	106 97	96 86	88 83	103	98	101	99
38	6029	yes no	102 95	100 98	110 97	96 86	87 82	103	99	103	101
39	754	yes no	102 94	100 94	101 93	87 73	80 70	106	84	87	85
40	2261	yes no	106 99	100 95	105 98	97 88	89 85	100	92	95	93
41	301	yes no	95 90	109 106	100 94	72 52	66 50	111	54	58	57
42	4522	yes no	101 104	97 105	102 104	92 94	85 90	100	97	100	98
43	3768	yes no	104 107	99 106	105 107	94 96	86 86	104	99	102	100
44	2261	yes no	106 109	99 104	104 108	95 98	87 94	102	95	97	95
45	301	yes no	113 117	124 129	101 105	77 79	70 75	127	70	74	73
46	6028	yes no	102 107	100 114	111 110	95 98	87 94	103	100	103	101
47	754	yes no	106 113	104 111	191 108	87 95	81 91	157	133	89	87
48	4522	yes no	103 109	97 111	106 112	94 100	86 95	103	99	102	100
	·· ·	1.1 1.				400					

no 109 111 112 100 note: Explanation of calibration methods under Table 4.8.2

Table 4.8.6 Percent Found for Stoddard Solvent C

(see r	notes)		calibration methods										
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9		
49	3897	yes no	99 98	99 97	101 98	100 98	98 97	100	90	88	88		
50	6235	yes no	99 97	98 96	100 99	98 97	98 97	94	88	88	88		
51	779	yes no	96 95	92 91	97 96	106 106	106 105	96	78	61	61		
52	545	yes no	92 91	87 85	95 94	105 104	105 104	105	82	59	59		
53	6235	yes no	100 100	99 99	102 102	99 99	98 99	95	88	89	88		
54	2338	yes no	102 100	101 99	102 100	106 104	105 104	109	95	89	89		
55	545	yes no	99 98	94 93	101 100	112 112	112 112	69	82	60	60		

	Fercent Found for Stoudard Solvent C													
(see n	otes)	_	calibration methods											
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9			
56	3897	yes no	101 100	100 100	102 101	101 100	100 100	101	91	89	89			
57	1559	yes no	100 101	99 99	101 101	105 106	105 105	94	79	70	70			
58	2338	yes no	101 100	100 99	101 100	103 101	102 101	89	77	71	71			
59	1559	yes no	100 102	98 100	101 102	105 107	104 106	93	79	70	70			
60	779	yes no	100 767	96 739	100 769	105 810	105 809	99	80	63	63			

Table 4.8.6 Percent Found for Stoddard Solvent C

note: Explanation of calibration methods under Table 4.8.2

Table 4.8.7 Percent Found for Stoddard Solvent D

			Feicei	it Found		Judaru	Solven	υ			
(see r	notes)					calibra	ation me	ethods			
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9
61	3045	yes no	102 96	100 100	102 96	103 98	102 103	102	104	34	34
62	3045	yes no	102 96	101 101	102 97	104 98	103 103	102	104	34	34
63	6853	yes no	103 100	102 101	104 99	102 98	102 102	103	105	34	34
64	1523	yes no	98 97	94 98	96 94	101 100	104 101	100	102	30	31
65	761	yes no	97 100	89 92	99 97	104 102	107 104	114	116	29	30
66	533	yes no	99 106	97 90	119 117	107 105	110 106	125	127	28	28
67	6853	yes no	99 98	97 99	100 97	98 96	101 97	98	100	33	33
68	533	yes no	99 105	87 88	100 96	107 103	108 106	125	127	28	29
69	1523	yes no	98 96	94 97	101 97	101 98	103 100	100	102	30	31
70	761	yes no	101 102	93 94	119 115	108 104	109 108	117	119	30	31
71	4568	yes no	100 96	99 99	99 95	100 96	101 99	99	102	33	34
72	4568	yes no	100 96	98 100	104 100	100 97	102 99	99	101	33	34

no 96 100 100 97 note: Explanation of calibration methods under Table 4.8.2

Table 4.8.8 Percent Found for Stoddard Solvent E

			Percer	it Found	1 IOF 510	oddard	Solven	(E			
(see i	notes)	_				calibra	ation me	ethods			
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9
73	7756	yes no	104 108	94 96	103 111	99 106	92 94	106	102	35	35
74	2327	yes no	103 110	98 100	103 112	103 109	95 97	153	105	35	34
75	3878	yes no	104 110	97 98	102 111	100 106	93 95	132	102	35	34
76	776	yes no	89 99	88 88	96 103	116 122	108 109	139	77	17	16
77	5429	yes no	101 108	94 96	102 109	97 104	90 93	116	98	34	32
78	7756	yes no	102 110	93 97	101 112	96 106	89 94	103	97	33	32

			Percen			buuaru s	Solveni	. ⊏				
(see r	notes)		calibration methods									
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9	
79	388	yes no	78 91	81 80	99 106	130 140	125 126	206	112	17	16	
80	3878	yes no	101 108	94 97	103 110	98 105	91 94	129	99	34	33	
81	5429	yes no	102 111	94 99	103 112	99 109	92 97	118	100	35	33	
82	2327	yes no	100 110	96 99	102 112	101 108	94 97	151	109	34	33	
83	776	yes no	84 96	83 86	95 104	110 117	102 105	170	97	24	23	
84	388	yes no	77 92	79 80	98 107	122 132	114 118	199	108	16	15	

Table 4.8.8 Percent Found for Stoddard Solvent E

note: Explanation of calibration curves under Table 4.8.2

					Table 4						
			Perce	ent Fou	nd for N						
(see r	notes)					calibra	ation me	ethods			
sample	μg	Istd	#1	#2	#3	#4	#5	#6	#7	#8	#9
85	7673	yes no	109 100	113 98	106 88	101 91	106 90	103	99	94	100
86	230	yes no	186 270	200 275	108 98	90 82	88 94	57	109	43	46
87	1534	yes no	149 144	158 145	119 107	129 119	135 117	110	93	86	92
88	5371	yes no	107 115	110 113	103 106	102 108	107 107	100	92	86	92
89	7673	yes no	106 116	110 113	103 107	96 102	101 101	107	104	99	106
90	537	yes no	210 226	224 228	65 67	123 108	114 106	50	40	37	40
91	2302	yes no	110 112	115 112	104 101	104 102	107 99	89	76	70	75
92	1534	yes no	107 112	113 112	106 103	106 103	108 102	91	76	70	75
93	537	yes no	61 73	65 74	71 64	62 54	56 54	39	32	30	31
94	230	yes no	82 143	89 149	106 96	72 67	78 66	45	36	33	35
95	5371	yes no	99 106	103 105	101 106	93 99	97 97	110	101	95	102
96	2302	yes no	104 103	110 103	106 104	106 104	110 102	90	77	71	76

note: Exlanation of calibration methods under Table 4.8.2

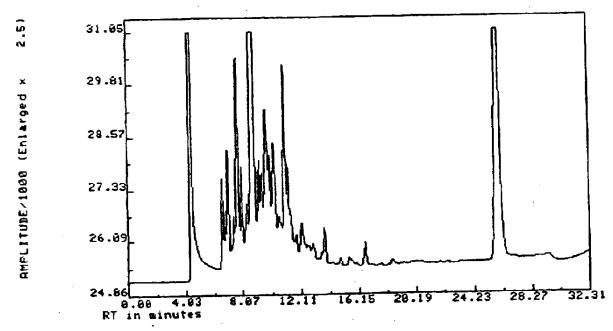


Figure 3.5.1. Chromatogram of PDF standard.

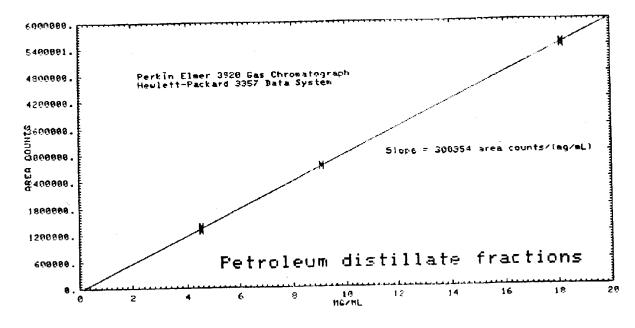


Figure 4.3.2. Sensitivity.

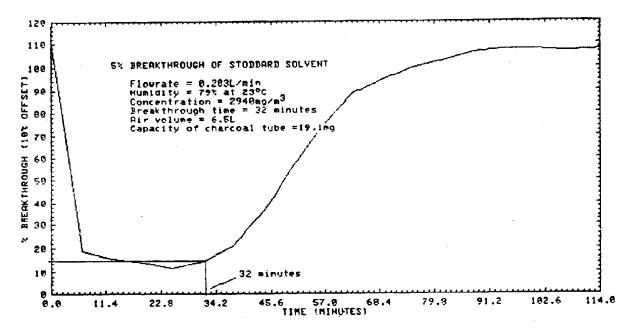


Figure 4.4. Breakthrough curve.

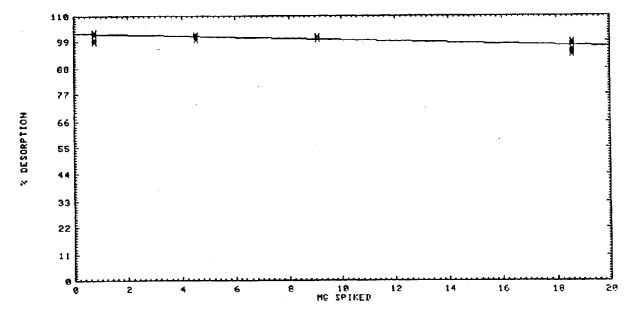


Figure 4.5. Desorption efficiencies.

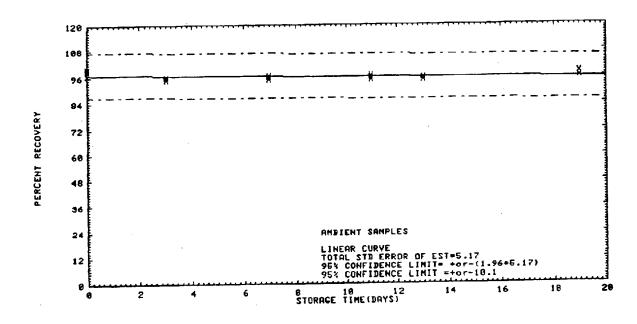


Figure 4.6.1. Ambient storage.

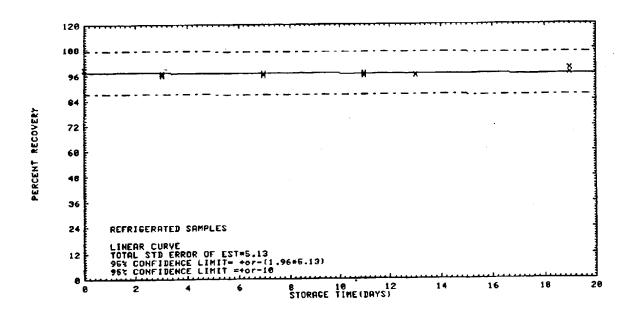


Figure 4.6.2. Refrigerated storage.

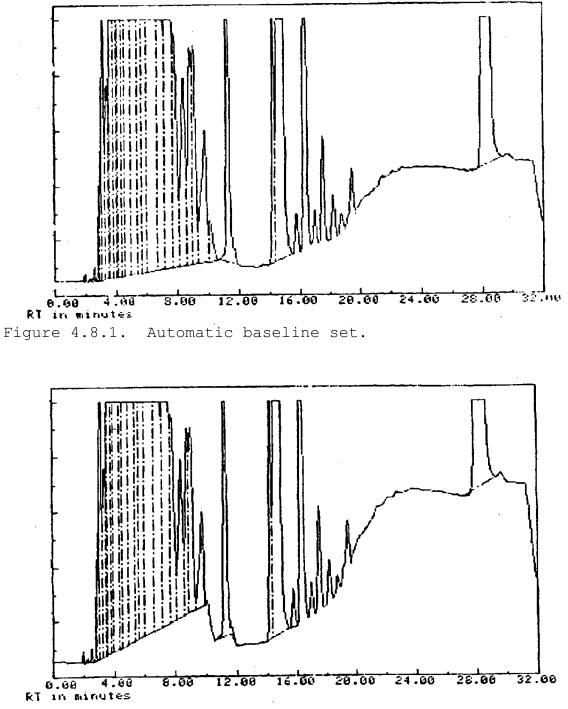


Figure 4.8.2. Automatic baseline set.

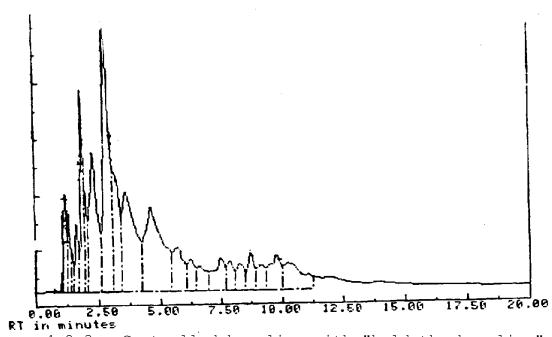


Figure 4.8.3. Controlled baseline with "hold the baseline" function.

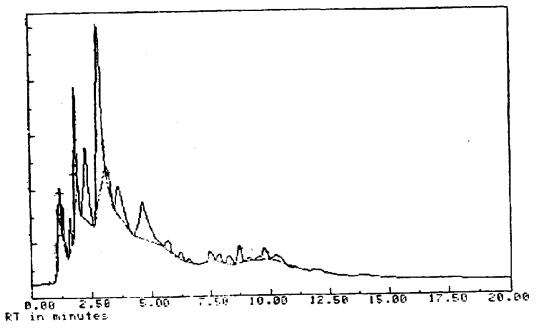


Figure 4.8.4. Controlled baseline with "valley reset" function.

5. References

- 5.1 "Criteria for a Recommended Standard...Occupational Exposure to Refined Petroleum Solvents"; Department of Health, Education and Welfare, National Institute for Occupational Safety and Health: Cincinnati, OH, 1977 (DHEW) (NIOSH) Publ. (U.S.) No. 77-192.
- 5.2 "NIOSH Manual of Analytical Methods", 2nd ed.; Department of Health, Education and Welfare, National Institute for Occupational Safety and Health: Cincinnati, OH, 1977; Vol. 3, Methods S380 and S382; DHEW (NIOSH) Publ. (U.S.) No. 77-157-C.
- 5.3 Drushel, Harry V. Journal of Chromatographic Science. 21, August 1983, p 375.
- 5.4 "Occupational Health Guideline for Stoddard Solvent", Department of Health and Human Services, National Institute for Occupational Safety and Health: U.S. Government Printing Office, Washington, D.C., 1978; Publ. 81-123.
- 5.5 "Occupational Health Guideline for Petroleum Distillates", Department of Health and Human Services, National Institute for Occupational Safety and Health: U.S. Government Printing Office, Washington, D.C. 1978; Publ. 81-123.